01-11【李加宁】五教5207 吴文俊重点实验室代数学系列报告之259

发布者:唐慧发布时间:2025-01-08浏览次数:10

题目:Stabilization on ideal class groups in potential cyclic towers


报告人:李加宁 山东大学


时间:2025年1月11日(周六)上午9:30-10:30


地点:东区第五教学楼5207教室


摘要:Let $F_\infty/F$ be a $\mathbb{Z}_p$-extension. Suppose it is totally ramified at every ramified prime. Fukuda's stabilization result states that if $A_{0}\cong A_1$, then $A_0\cong A_n$ for $n\geq 1$, where $A_n$ is the $p$-class group of the $n$-th layer.We extend the stabilization result of Fukuda in Iwasawa theory on $p$-class groups in $\mathbb{Z}_p$ or $\mathbb{Z}/p^d\mathbb{Z}$ cyclic towers to potential cyclic towers. A typical example of potential cyclic tower is a radical tower, say $\mathbb{Q}\subset \mathbb{Q}(\sqrt[p]{p})\subset  \\mathbb{Q}(\sqrt[p^2]{p})\subset \cdots$.