6-16天元基金几何与随机分析及其应用交叉讲座之117【何辉】

发布者:系统管理员发布时间:2018-06-12浏览次数:29


报告题目:On large deviation probabilities for empirical distribution of branching random walks: Schroder case and Bottcher case

报告人:何辉,北京师范大学 

时间:2018616日 上午9:00-10:00

地点:管研楼1518

摘要:

Given a super-critical branching random walk on $/mathbb R$ started from the origin, let $Z_n(/cdot)$ be the counting measure which counts the number of individuals at the $n$-th generation located in a given set. Under some mild conditions, it is known  that for any interval $A/subset {/mathbb R}$, $/frac{Z_n(/sqrt{n}A)}{Z_n({/mathbb R})}$ converges a.s. to $/nu(A)$,  where $/nu$ is the standard Gaussian measure.In this work, we investigate the convergence rates of $${/mathbb P}/left(/frac{Z_n(/sqrt{n}A)}{Z_n({/mathbb R})}-/nu(A)>/Delta/right),$$ for $/Delta/in (0, 1-/nu(A))$, in both Schr/"{o}der case and B/"{o}ttcher case. This is a joint work with Xinxin Chen.