09-17【韦韡】管研1318 微分方程系列报告

发布者:万宏艳发布时间:2020-09-16浏览次数:164

报告题目:A $\sigma_2$ Penrose inequality for conformal asymptotically hyperbolic 4-discs


报告人:韦韡,复旦大学上海数学中心


时间:2020年9月17日(星期四)下午2:00-3:00


地点:管研楼1318

 
摘要: In this paper, we consider conformal metrics on a unit 4-disc with an asymptotically hyperbolic end and possible isolated conic singularities. We define a mass term of the AH end. If the σ 2 curvature has lower bound σ 2≥ 32 , we prove a Penrose type inequality relating the mass and contributions from singularities. We also classify sharp cases, which is the standard hyperbolic 4-space H4 when no singularity occurs. It is worth noting that our curvature condition implies non-positive energy density. This is joint work with Fang, Hao


欢迎广大师生参加!