4-10微分方程方向系列报告【王林峰】

发布者:系统管理员发布时间:2018-04-08浏览次数:51



Title:Geometric and topological properties of gradient Einstein manifolds
Speaker:王林峰 (教授, 南通大学)
Time:2018年4月10日   下午 14:30-15:30
Room:东区管理科研楼  数学科学学院1518室

Abstract:Gradient Einstein manifolds are complete manifolds with special metric structure. In this report we plan to consider four questions on gradient Einstein manifolds. 1) Estimates for various geometric quantities, in particular the estimates of the scalar curvature and the growth of the potential function play important roles in further study of gradient Einstein manifolds. 2) Spectral estimates on gradient Einstein solitons, the spectral gap and compact resolvent for the weighted Hodge Laplace operator on gradient Ricci solitons and quasi Einstein manifolds. 3) The geometric or topological properties at infinity for gradient Einstein manifolds.  4) Classification questions for gradient Einstein manifolds under suitable conditions.