Title:Gromov-Witten invariants of Calabi-Yau A-infinity categories
Speaker:涂君武 (密苏里大学)
Time:2017年12月22日 上午9:45-10:45
Room:东区第五教学楼 5206
Abstract: Classical mirror symmetry relates Gromov-Witten invariants in symplectic geometry to Yukawa coupling invariants in algebraic geometry. Through non-commutative Hodge theory, one can define categorical Gromov-Witten invariants associated to (Calabi-Yau A-infinity) categories. Conjecturally, this construction should reproduce the Gromov-Witten invariants and Yukawa coupling invariants, when applied Fukaya categories and Derived categories, respectively. In this talk, I describe a first computation of categorical Gromov-Witten invariants at positive genus. This is a joint work with Andrei Caldararu.