Title:A generalisation of a result of Mark Kac
Speaker:Freddy Delbaen, 教授(the Department of Mathematics, ETH Zurich)
Time:2017年9月19日 上午9:00--10:00
Room:东区管理科研楼 数学科学学院1518室
Abstract: In 1947 Mark Kac proved that for a centred Hoelder continuous function $f$ defined on $[0,1]$
and extended periodically to the whole real line, the sequence $f(2^k t)$ satisfies a Central Limit Theorem.
We extend the result to measurable $L^2$ functions satisfying a fast approximation property. The result
naturally extends to similar functions defined on Bernoulli shifts.