报告题目: Rigidity results in steady Ricci solitons
报告人:朱小华教授, 北京大学数学学院
报告时间:
摘要:
Ricci solitons play an important role in the study of Ricci flow. Perelman conjectured that all 3-dimensional $/kappa$-noncollapsed steady Ricci solitons must be rotationally symmetric. The conjecture was solved by Brendle in 2012. For higher dimensional $/kappa$-noncollapsed steady Ricci solitons with nonnegative curvature, the classification is still open.
In this talk, I will first discuss steady K/"ahler-Ricci solitons. We show that any $n$-dimensional $/kappa$-noncollapsed steady K/"ahler-Ricci soliton with non-negative sectional curvature must be flat. Then for general $/kappa$-noncollapsed steady Ricci solitons with nonnegative curvature, we prove that they should be rotationally symmetric under an additional condition of curvature decay. This is a joint work with Dr. Yuxing Deng.