吴文俊数学重点实验室微分几何与分析系列讲座之五十三【张毅教授】

发布者:系统管理员发布时间:2013-06-19浏览次数:18

报告题目: On The Geometry of Smooth Toroidal Compactifications of Siegel Varieties I & II


报告人:  张毅教授   复旦大学

报告时间: 2013年6月20日 (星期四) 14:30-16:00pm ,
                 2013年6月27日 (星期四) 14:30-16:00pm
 
报告地点:管理科研楼1218教室


报告摘要:

This work is a part of  joint program with S.-T. Yau. We study smooth toroidal compactifications of Siegel varieties thoroughly from the viewpoints of Hodge theory and K/"ahler-Einstein metric..
We observe that any cusp of a Siegel space can be identified as a set of certain weight one polarized mixed Hodge structures.We then study the infinity boundary divisors of toroidalcompactifications, and obtain a global volume form formula of an arbitrary smooth Siegel variety $/sA_{g,/Gamma}(g>1)$ with a smooth toroidal compactification $/overline{/sA}_{g,/Gamma}$ such that $D_/infty:=/overline{/sA}_{g,/Gamma}/setminus /sA_{g,/Gamma}$ is normal crossing. We use this volume form formula to show that the unique group-invariant K/"ahler-Einstein metric on $/sA_{g,/Gamma}$ endows some restraint combinatorial conditions for all smooth toroidalcompactifications of $/sA_{g,/Gamma}.$  Again using the volume form formula, we study the asymptotic behaviour of logarithmical canonical line bundle on any smooth toroidal compactification of $/sA_{g,/Gamma}$ carefully and we obtain that the logarithmical canonical bundle degenerate sharply even though it is big and numerically effective.

 

主办单位: 中国科学技术大学数学科学学院        中科院吴文俊数学重点实验室

欢迎感兴趣的师生参加!