07-14【曹外香】五教5206 研究生教育创新计划高水平学术前沿讲座

发布者:钱思源发布时间:2025-06-23浏览次数:15

题目:Spectral volume methods for hyperbolic equations


报告人:曹外香 教授,北京师范大学


时间:2025年7月14日(周一)17:00-18:00


地点:东区五教5206


摘要:This talk is concerned with the analysis of two spectral volume (SV) methods for hyperbolic equations: one is constructed basing on the Gauss-Legendre points (LSV) and the other is based on the right-Radau points (RRSV). We first prove that for a general nonuniform mesh and any polynomial degree $k$, both the LSV and RRSV methods are stable and can achieve optimal convergence orders in the $L^2$ norm. Secondly, we prove that both methods have some superconvergence properties at some special points. For instances, at the downwind points, the solution of RRSV and  LSV methods converges  with the order of ${\cal O}(h^{2k+1})$ and ${\cal O}(h^{2k})$, respectively. Moreover, we demonstrate that for constant-coefficient equations, the RRSV method is identical to the upwind discontinuous Galerkin (DG) method. Our theoretical findings are validated with several numerical experiments at the end.


报告人简介:曹外香北京师范大学数学科学学院教授,研究方向为偏微分方程数值解法和数值分析,主要研究有限元方法、有限体积方法,间断有限元方法高效高精度数值计算。主要结果发表SIAM J. Numer. Anal., Math. Comp.等期刊曾获中国博士后基金一等资助和特别资助,广东省自然科学二等奖,主持国家自然科学基金面上项目、国家自然科学基金青年基金等项目。