搜索:
 
 当前位置:>首页 -> 学术报告
06-10吴文俊数学重点实验室微分几何系列报告【王 一】

Title:Boundary operator associated to $\sigma_k$ curvature
Speaker: 王 一  (Johns Hopkins University
Time:2019年6月10日     下午  15:00-16:00
Room:东区第五教学楼  5305室

Abstract:On a Riemannian manifold $(M, g)$, the $\sigma_k$ curvature is the $k$-th elementary symmetric function of the eigenvalues of the Schouten tensor $A_g$. It is known that the prescibing $\sigma_k$ curvature equation on a closed manifold without boundary is variational if k=1, 2 or $g$ is locally conformally flat; indeed, this problem can be studied by means of the energy $\int \sigma_k(A_g) dv_g$. We construct a natural boundary functional which, when added to this energy, yields as its critical points solutions of prescribing $\sigma_k$ curvature equations with general non-vanishing boundary data. Moreover, we prove that the new energy satisfies the Dirichlet principle. If time permits, I will also discuss applications of our methods. This is joint work with Jeffrey Case.


欢迎感兴趣的师生参加!
  科大主页 | 国家数学与交叉科学中心(合肥) | 中科院吴文俊数学重点实验室 |
中科院数学与系统科学研究院 | 北京国际数学研究中心 | 安徽省数学会