搜索:
 
 当前位置:>首页 -> 学术报告
05-21天元基金几何与随机分析及其应用交叉讲座之156【明平兵】

题目:An arbitrary-order discontinuous Galerkin method with one unknown per element

报告人: 明平兵 研究员(中国科学院数学与系统科学研究院)

时间: 2019年5月21日(周二)上午9:00-10:00
地点: 管理科研楼1208

摘要:
We propose an arbitrary-order discontinuous Galerkin method for second-order elliptic problem on general polygonal mesh with only one degree of freedom per element. This is achieved by locally solving a discrete least-squares over a neighboring element patch. Under a geometrical condition on the element patch, we prove an optimal a priori error estimates in the energy norm and in the L$^2$ norm. The accuracy and the efficiency of the method up to order six on several polygonal meshes are illustrated by a set of benchmark problems that include elliptic equations of 2nd order and 4th order, in both two dimension and three dimension. This is a joint work with Rho Li, Ziyuan Sun and Zhijian Yang.

  科大主页 | 国家数学与交叉科学中心(合肥) | 中科院吴文俊数学重点实验室 |
中科院数学与系统科学研究院 | 北京国际数学研究中心 | 安徽省数学会