搜索:
 
 当前位置:>首页 -> 学术报告
01-21离散微分几何系列报告【Florentin Münch】

Title:Liouville property and discrete Ricci curvature
Speaker:Florentin Münch  (Max Planck Institute for Mathematics in the Sciences)
Time:2019年1月21日(周一)   下午  15:00-16:00
Room:东区管理科研楼  数学科学学院1308室

Abstract: We give an introduction on discrete Ricci curvature notions and give an overview of recent results. In particular, we focus on Ollivier Ricci curvature which has been introduced via optimal transport theory. A characterization of lower Ricci curvature bounds via gradient estimates for the heat semigroup is presented. We show that non-negative Ricci curvature implies the Liouville property, i.e., every bounded harmonic function is constant. This seems to be the first analytic result for graphs with non-negative Ricci curvature in the sense of Ollivier.

  科大主页 | 国家数学与交叉科学中心(合肥) | 中科院吴文俊数学重点实验室 |
中科院数学与系统科学研究院 | 北京国际数学研究中心 | 安徽省数学会