搜索:
 
 当前位置:>首页 -> 学术报告
10-12微分几何讨论班系列报告【朱保成】

Title:On the polar Orlicz-Minkowski problems
Speaker:朱保成  教授  (湖北民族大学)
Time:2018年10月12日(周五)   上午 10:00-11:00
Room:东区管理科研楼  数学科学学院1418室

Abstract:We will talk about the polar Orlicz-Minkowski problems: under what conditions on a nonzero finite measure and a continuous function $\varphi:(0,\infty)\to (0,\infty)$ there exists a convex body $K\in \Re_0$ such that $K$ is an optimizer of the following optimization problems:
$${\inf/\sup}_{|L^{^{^\circ}}|=\omega_n}\left\{\int_{S^{n-1}}\varphi(h_L)d\mu:L\in \Re_0\right\}.$$
The solvability of the polar Orlicz-Minkowski problems is discussed under different conditions. In particular, under certain conditions on$\varphi$, the existence of a solution is proved for a nonzero finite measure $\mu$ on unit sphere $S^{n-1}$ which is not concentrated on any hemisphere of $S^{n-1}$.

  科大主页 | 国家数学与交叉科学中心(合肥) | 中科院吴文俊数学重点实验室 |
中科院数学与系统科学研究院 | 北京国际数学研究中心 | 安徽省数学会