搜索:
 
 当前位置:>首页 -> 学术报告
6-22吴文俊数学重点实验室组合图论系列讲座之一百零四【陈敏】
报告题目:(3, 1)∗ -choosability of planar graphs 

报告人:Min Chen 浙江师范大学

报告时间:6月22日  11:00-12:00

地点:1518
 
摘要:

An (L, d) ∗ -coloring is a mapping π that assigns a color π(v) ∈ L(v) to each vertex v ∈ V (G) so that at most d neighbors of v receive color π(v). A graph G is said to be (k, d) ∗ -choosable if it admits an (L, d) ∗ -coloring for every list assignment L with |L(v)| ≥ k for all v ∈ V (G). In this talk, firstly, I will show some known results on improper list coloring of (planar) graphs with some restrictions. Then, I will give a short proof of our recent result which says that every planar graph without adjacent triangles and 6-cycles is (3, 1)∗ -choosable. This partially answers the question proposed by Xu and Zhang that every planar graphs without adjacent triangles is (3, 1)∗ - choosable. This is joint work with Andr′e Raspaud and Weifan Wang. Keyword: Planar graphs; Improper choosability; Cycle
  科大主页 | 国家数学与交叉科学中心(合肥) | 中科院吴文俊数学重点实验室 |
中科院数学与系统科学研究院 | 北京国际数学研究中心 | 安徽省数学会