搜索:
 
 当前位置:>首页 -> 学术交流
研究生教育创新计划高水平学术前沿讲座日
研究生教育创新计划高水平学术前沿讲座日
---Differential Equations and Dynamical Systems Day

时间: 2017年10月16日
地点: 管理科研楼1518教室

邀请报告人:  

 李继彬教授      (华侨大学)
 韩茂安教授      (上海师范大学)
 杜增吉教授     (江苏师范大学)

Time

Speaker

Title

9:15-10:15

李继彬教授

Exact Solutions and Dynamics of the Raman Soliton Model in Nanoscale Optical Waveguides, with Metamaterials,  Having Polynomial Law Non-Linearity

10:20-11:20

韩茂安教授

Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems

11:45-14:15

 

Lunch&Break

15:00-16:20

 

Discussion

16:30-17:30

杜增吉教授

Traveling wave solutions of a modified vector-disease model


Abstract

李继彬教授 (华侨大学)  

Title: Exact Solutions and Dynamics of the Raman Soliton Model in Nanoscale Optical Waveguides, with Metamaterials,Having Polynomial Law Non-Linearity

Abstract:  Raman soliton model in nanoscale optical waveguides, with metamaterials, having polynomial law non-linearity are investigated by the method of dynamical systems. Because the functions $\phi(\xi)$  in the solutions $q(x,t)=\phi(\xi)\exp(i(-kx+\omega t)),\  (\xi=x-vt)$ satisfy a singular planar dynamical system  having two singular straight lines. By using the bifurcation theory method of dynamical systems to the equations of $\phi(\xi)$, under 23 different parameter conditions, bifurcations of phase portraits and exact periodic solutions, homoclinic and heteroclinic solutions, periodic peakons and peakons as well as  compacton solutions for this planar dynamical system  be given. Under different parameter conditions, solutions $q(x,t)$ can be exactly obtained. 92 exact explicit solutions of system (6) are derived

韩茂安教授 (上海师范大学)  

Title: Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems

Abstract: This paper deals with the problem of periodic orbit bifurcations for high-dimensional piecewise smooth systems. Under the assumption that the unperturbed system has a family of periodic orbits which are transversal to the switch plane, a formula for the first order Melnikov vector function is developed which can be used to study the number of periodic orbits bifurcated from the periodic orbits. We especially can use the function to study the number of periodic orbits both in degenerate Hopf bifurcations and in degenerate homoclinic bifurcations. Finally, we present two examples to illustrate an application of the theoretical results.

杜增吉教授 (江苏师范大学)  

Title: Traveling wave solutions of a modified vector-disease model

Abstract: We discuss the existence and asymptotic behavior of traveling wave fronts in a modified vector-disease model. We first establish the existence of traveling wave solutions for the modified vector-disease model without delay, then the existence of traveling fronts for the model with a special local delay convolution kernel are obtained by employing geometric singular perturbation theory and the linear chain trick. At last, we investigate the local stability of the steady states, the existence and the asymptotic behavior of traveling wave solutions for that model with a special non-local delay convolution kernel.

主办:    中国科学技术大学数学科学学院

欢迎广大师生参加!

  科大主页 | 国家数学与交叉科学中心(合肥) | 中科院吴文俊数学重点实验室 |
中科院数学与系统科学研究院 | 北京国际数学研究中心 | 安徽省数学会