搜索:
 
 当前位置:>首页 -> Events
Induction for 4-connected Matroids and Graphs
·······················································································································································································································································


Speaker:Xiangqian Zhou (Joe)

Time:  2017-6-14 16:30-17:30

Place: Room 1518,School of Mathematical Sciences

Detail:

Wright State University, Dayton Ohio USA and Huaqiao University, Quanzhou Fujian China A matroid M is a pair (E, I) where E is a finite set, called the ground set of M, and I is a non-empty collection of subsets of E, called independent sets of M, such that (1) a subset of an independent set is independent; and (2) if I and J are independent sets with |I| < |J|, then exists x ∈ J\I such that I ∪ {x} is independent. A graph G gives rise to a matroid M(G) where the ground set is E(G) and a subset of E(G) is independent if it spans a forest. Another example is a matroid that comes from a matrix over a field F: the ground set E is the set of all columns and a subset of E is independent if it is linearly independent over F. Tutte’s Wheel and Whirl Theorem and Seymour’s Splitter Theorem are two well-known inductive tools for proving results for 3-connected graphs and matroids. In this talk, we will give a survey on induction theorems for various versions of matroid 4-connectivity.

Organizer: School of Mathematical Sciences

  网站首页 | 学院概况 | 院系介绍 | 新闻中心 | 师资队伍 | 科学研究 | 人才培养 | 学科建设 | 学生工作 | 研招在线 | 资料下载   2011 中国科学技术大学数学科学学院
站点维护: yangor