搜索:
 
 当前位置:>首页 -> Events
On Asymptotic Dynamics for L^2 critical Generalized KdV Equations with a Saturated Perturbation
·······················································································································································································································································


SpeakerLAN YangUniversity of Paris-Sud,Université Paris-Sud   

Time2017-04-13 10:30-11:30

PlaceRoom 1518, School of Mathematical Sciences

DetailWe consider the $L^2$ critical gKdV equation with a saturated perturbation. For any initial data in $H^1$, the corresponding solution is always global and bounded in $H^1$. This equation has a family of solitons, and our goal is to study the behavior of solutions with initial data near the soliton. Together with a suitable decay assumption, there are only 3 possibilities: i. the solution converges asymptotically to a solitary wave; ii. the solution is always in a small neighborhood of the modulated family of solitary waves, but blows down at infinite time; iii. the solution leaves any small neighborhood of the modulated family of the solitary waves. This result can be viewed as a perturbation of the rigidity dynamics near ground state for $L^2$ critical gKdV equations proved by Martel, Merle and Raphaël.

Organizer: School of Mathematical Sciences

  网站首页 | 学院概况 | 院系介绍 | 新闻中心 | 师资队伍 | 科学研究 | 人才培养 | 学科建设 | 学生工作 | 研招在线 | 资料下载   2011 中国科学技术大学数学科学学院
站点维护: yangor