12-01【吴明燕】新楼308 随机分析系列报告

发布者:卢珊珊发布时间:2025-11-26浏览次数:10

报告题目:SDE driven by multiplicative cylindrical $\alpha$-stable noise with distributional drift


报告人:吴明燕  厦门大学


报告时间:12月1日 10:00-11:00


报告地点:新楼308

 

摘要:

In this talk, we will introduce the following stochastic differential equation driven by a non-degenerate symmetric $\alpha$-stable process in $\mathbb{R}^d$ with $\alpha \in (1,2)$:\begin{align*}{\mathord{{\rm d}}} X_t=b(t,X_t){\mathord{{\rm d}}} t+\sigma(t,X_{t-}){\mathord{{\rm d}}}L_t^{(\alpha)},\ \ X_0 =x \in \mathbb{R}^d,\end{align*}where $b$ belongs to $L^\infty(\mathbb{R}_+;\mathbf{C}^{-\beta}(\mathbb{R}^d))$ with some $\beta\in(0,\alpha-1)$, and $\mathbf{C}^\beta$ denotes a Besov space (see Definition \ref{iBesov} below). The coefficient $\sigma:\mathbb{R}_+\times \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ is a measurable matrix-valued function. The noise $L_t^{(\alpha)}=(L_t^{(\alpha),1},...,L_t^{(\alpha),d})$ consists of independent $1$-dimensional symmetric $\alpha$-stable processes, and is referred to as a cylindrical $\alpha$-stable process. We will present the well-posedness result of weak solutions to the SDE, and provide quantitative stability estimates with respect to the drift coefficients.This is a joint work with Zimo Hao.