Zeta Functions in Combinatorics and Number Theory

To Prof. Keqin Feng in celebration of his 70th birthday

Winnie Li
Pennsylvania State University, U.S.A.
and
National Center for Theoretical Sciences, Taiwan
Riemann zeta function

The Riemann zeta function is

\[\zeta(s) = \sum_{n \geq 1} n^{-s} = \prod_{p \text{ prime}} \left(1 + p^{-s} + p^{-2s} + \cdots\right) \]

\[= \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} \text{ for } \Re s > 1. \]

- \(\zeta(s) \) has a meromorphic continuation to the whole \(s \)-plane;
- It satisfies a functional equation relating \(\zeta(s) \) to \(\zeta(1 - s) \);
- It vanishes at \(s = -2, -4, \ldots \), called trivial zeros of \(\zeta \).

Riemann Hypothesis: all nontrivial zeros of \(\zeta(s) \) lie on the line of symmetry \(\Re(s) = \frac{1}{2} \).
Zeta functions of varieties

\(V: \) smooth irred. proj. variety of dim. \(d \) defined over \(\mathbb{F}_q \)

The zeta function of \(V \) counts \(N_n = \#V(\mathbb{F}_{q^n}) \):

\[
Z(V, u) = \exp \left(\sum_{n \geq 1} \frac{N_n}{n} u^n \right) = \prod_{\text{v closed pts}} \frac{1}{(1 - u^{\text{deg } v})}.
\]

When \(d = 1 \), i.e., \(V \) is a curve of genus \(g \),

\[
Z(V, u) = \prod_{1 \leq i \leq 2g} \frac{(1 - \alpha_i u)}{(1 - u)(1 - qu)}.
\]

RH: all zeros of \(Z(V; q^{-s}) \) lie on \(\Re s = \frac{1}{2} \), i.e., \(|\alpha_i| = q^{1/2} \); proved by Hasse and Weil.
For general d, Grothendieck proved

$$Z(V, u) = \frac{P_1(u)P_3(u) \cdots P_{2d-1}(u)}{P_0(u)P_2(u) \cdots P_{2d}(u)},$$

where $P_i(u) = \det(I - \text{Frob } u|H^i(V))$ is a polynomial in $\mathbb{Z}[u]$. RH: the roots of $P_i(u)$ have absolute value $q^{-i/2}$. Proved by Deligne.
The Ihara zeta function of a graph

- X : connected undirected finite graph
- A cycle has a starting point and an orientation.
- Interested in geodesic tailless cycles.

- Two cycles are *equivalent* if one is obtained from the other by shifting the starting point.

![Figure 1: without tail](image1)
![Figure 2: with tail](image2)
• A cycle is *primitive* if it is not obtained by repeating a cycle (of shorter length) more than once.

The Ihara zeta function of X counts the number N_n of geodesic tailless cycles of length n:

$$Z(X; u) = \exp \left(\sum_{n \geq 1} \frac{N_n u^n}{n} \right) = \prod_{[C]} \frac{1}{1 - u^{l(C)}},$$

where $[C]$ runs through all equiv. classes of primitive geodesic and tailless cycles C, and $l(C)$ is the length of C.
Properties of zeta functions of regular graphs

Ihara (1968): Let X be a finite $(q+1)$-regular graph on n vertices. Then its zeta function $Z(X, u)$ is a rational function of the form

$$Z(X; u) = \frac{(1 - u^2)\chi(X)}{\det(I - Au + qu^2I)},$$

where $\chi(X) = n - n(q + 1)/2 = -n(q - 1)/2$ is the Euler characteristic of X and A is the adjacency matrix of X.

If X is not regular, replace qI by Q, the degree matrix minus the identity matrix on vertices—Bass, Stark-Terras, Hoffman.
Spectral theory of regular graphs

- The trivial eigenvalues of X are $\pm(q + 1)$, of multiplicity ≤ 1. The nontrivial eigenvalues λ satisfy $-(q + 1) < \lambda < q + 1$.

- Let $\{X_j\}$ be a family of $(q + 1)$-regular graphs with $|X_j| \to \infty$. Alon-Boppana:
 \[
 \lim_{j \to \infty} \inf \max_{\lambda \text{ of } X_j} \lambda \geq 2\sqrt{q}.
 \]

 Li, Serre: if X_j contains few short cycles of odd length,
 \[
 \lim_{j \to \infty} \sup \min_{\lambda \text{ of } X_j} \lambda \leq -2\sqrt{q}.
 \]

- $[-2\sqrt{q}, 2\sqrt{q}]$ is the spectrum of the $(q + 1)$-regular tree, the universal cover of X.

Ramanujan graphs and RH

- X is called a *Ramanujan graph* if all λ satisfy the bound

\[|\lambda| \leq 2\sqrt{q}. \]

So it is spectrally optimal.

- X is Ramanujan if and only if $Z(X, u)$ satisfies RH, i.e. the nontrivial poles of $Z(X, u)$ all have absolute value $q^{-1/2}$.

The Hashimoto edge zeta function of a graph

Endow two orientations on each edge of a finite graph X. The neighbors of $u \to v$ are the directed edges $v \to w$ with $w \neq u$. Associate the edge adjacency matrix A_e.

Hashimoto (1989): $N_n = \text{Tr} A_e^n$ so that

$$Z(X, u) = \frac{1}{\det(I - A_e u)}.$$

Combined with Ihara’s Theorem, we have

$$\frac{(1 - u^2) \chi(X)}{\det(I - Au + qu^2 I)} = \frac{1}{\det(I - A_e u)}.$$
Connections with number theory

When $q = p^r$ is a prime power, let F be a local field with the ring of integers \mathcal{O}_F and residue field $\mathcal{O}_F/\pi\mathcal{O}_F$ of size q.

Eg. $F = \mathbb{Q}_p$ and $\mathcal{O}_F = \mathbb{Z}_p$, or $F = \mathbb{F}_q((x))$ and $\mathcal{O}_F = \mathbb{F}_q[[x]]$.

\[(q + 1) - \text{regular tree} \quad \mathcal{T} = \text{PGL}_2(F)/\text{PGL}_2(\mathcal{O}_F) \]

vertices \leftrightarrow PGL$_2(\mathcal{O}_F)$-cosets

vertex adjacency operator A \leftrightarrow Hecke operator on

\[\text{PGL}_2(\mathcal{O}_F) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \text{PGL}_2(\mathcal{O}_F) \]

directed edges \leftrightarrow \mathcal{I}-cosets ($\mathcal{I} =$ Iwahori subgroup)

directadjacency operator A_e \leftrightarrow Iwahori-Hecke operator on

\[\mathcal{I} \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \mathcal{I} \]
\[X = X_\Gamma = \Gamma \backslash \text{PGL}_2(F)/\text{PGL}_2(\mathcal{O}_F) = \Gamma \backslash \mathcal{T} \] for a torsion-free discrete cocompact subgroup \(\Gamma \) of \(\text{PGL}_2(F) \).

- **Ihara (1968):** A torsion-free discrete cocompact subgroup \(\Gamma \) of \(\text{PGL}_2(F) \) is free of rank \(1 - \chi(X_\Gamma) \).

- **Take** \(F = \mathbb{Q}_p \) so that \(q = p \), \(\mathcal{O}_F = \mathbb{Z}_p \), and let \(D_\ell = \) the definite quaternion algebra over \(\mathbb{Q} \) ramified only at \(\infty \) and prime \(\ell \neq p \).

 \(\Gamma_\ell = D_\ell^\times(\mathbb{Z}[[1/p]]) \mod \text{center} \) is a discrete subgroup of \(\text{PGL}_2(\mathbb{Q}_p) \) with compact quotient; torsion-free if \(\ell \equiv 1 \pmod{12} \).

- **\(X_{\Gamma_\ell} = \Gamma_\ell \backslash \text{PGL}_2(\mathbb{Q}_p)/\text{PGL}_2(\mathbb{Z}_p) \) is a Ramanujan graph.**

- **Eichler-Shimura:** \(\frac{\det(I-Au+pu^2I)}{(1-(p+1)u+pu^2)} \) from \(X_{\Gamma_\ell} \) is the numerator of the zeta function of the modular curve \(X_0(\ell) \) mod \(p \).
Zeta functions of higher dimensional complexes

Desired properties of a combinatorial zeta function:

• it has a closed form expression giving topological and spectral information;

• it is related to zeta functions of varieties over finite fields under certain circumstances;

• it has connections with representation theory;

• it satisfies RH if and only if the underlying complex is spectrally optimal.

Consider finite-dimensional complexes arising as finite quotients of the Bruhat-Tits buildings associated to classical groups over a p-adic local field F.

Advantages:

- The underlying group facilitates algebraic parametrizations of geometric objects.
- A building is a simply-connected simplicial complex.
- The quotient of the building by a discrete torsion-free cocompact subgroup Γ gives a finite complex X_Γ.
- A building is a union of apartments, a geodesic in the building is a straight line in an apartment.
- A path in X_Γ is a geodesic if it lifts to a geodesic in the building.

Will discuss zeta functions of 2-dimensional complexes which are quotients of the buildings attached to $SL_3(F)$ and $Sp_4(F)$, resp.
Figure 3: an apartment of B_3
The Bruhat-Tits building \mathcal{B}_3 attached to $SL_3(F)$

- The vertices of the building \mathcal{B}_3 of $SL_3(F)$ are equivalence classes of rank 3 lattices (i.e. \mathcal{O}_F-modules) in F^3.

- The group $G = PGL_3(F)$ acts transitively on vertices. Use cosets of G to parametrize vertices, edges, and chambers.

- Vertices $\leftrightarrow K$ (standard maximal compact subgroup)-cosets; three types of vertices, given by $\mathbb{Z}/3\mathbb{Z}$.

- Each edge has a direction of type 1, its opposite has type 2; type one edges $\leftrightarrow E$ (parahoric subgroup) -cosets.

- Directed chambers $\leftrightarrow B$ (Iwahoric subgroup)-cosets.
Operators on \mathcal{B}_3

- $A_i = \text{the adjacency matrix of type } i \text{ neighbors of vertices } (i = 1, 2)$
 A_1 and A_2 are Hecke operators on certain K-double cosets.

- The neighbors of the type one edge $u \rightarrow v$ are the type one edges $v \rightarrow w$ such that u, v, w do not form a chamber.

- $L_E = \text{the type one edge adjacency matrix.}$
 It is a parahoric operator on an E-double coset.
 Its transpose L_E^t is the type two edge adjacency matrix.

- $L_B = \text{the adjacency matrix of directed chambers.}$
 It is an Iwahori-Hecke operator on a B-double coset.
Finite quotients of B_3

The finite complexes we consider are $X_\Gamma = \Gamma \backslash G/K = \Gamma \backslash B_3$, where Γ is a discrete torsion-free cocompact subgroup of G and $\text{ord}_\pi \text{det} \Gamma \equiv 0 \pmod{3}$ so that Γ identifies vertices of the same type.

Division algebras of degree 3 yield many such Γ’s.

Joint work with Ming-Hsuan Kang
Zeta function of the complex X_Γ

The zeta function of X_Γ counts the number N_n of tailless geodesic cycles of length n contained in the 1-skeleton of X_Γ, defined as

$$Z(X_\Gamma, u) = \exp\left(\sum_{n \geq 1} \frac{N_n u^n}{n}\right) = \prod_{[C]} \frac{1}{1 - u^{l_A(C)}},$$

where $[C]$ runs through the equiv. classes of primitive tailless geodesic cycles in the 1-skeleton of X_Γ, and $l_A(C)$ is the algebraic length of the cycle C.

We have

$$Z(X_\Gamma, u) = \frac{1}{\det(I - L_E u)} \frac{1}{\det(I - L^t_E u^2)}.$$

19
Zeta identity for X_Γ from \mathcal{B}_3

Theorem [Kang-L.]

(1) $Z(X_\Gamma, u)$ is a rational function given by

$$Z(X_\Gamma, u) = \frac{(1 - u^3)\chi(X_\Gamma)}{\det(I - A_1 u + qA_2u^2 - q^3u^3I) \det(I + L_Bu)},$$

where $\chi(X_\Gamma) = \#V - \#E + \#C$ is the Euler characteristic of X_Γ.

(2)

$$\frac{(1 - u^3)\chi(X_\Gamma)}{\det(I - A_1 u + qA_2u^2 - q^3u^3I)} = \frac{\det(I + L_Bu)}{\det(I - L_Eu) \det(I - L_E^t u^2)}.$$
Ramanujan complexes from B_3 and RH

A Ramanujan graph has its nontrivial eigenvalues fall in the spectrum of its universal cover.

The operators A_1 and A_2 on B_3 have the same spectrum Ω.

X_Γ is called a Ramanujan complex iff the nontrivial eigenvalues of A_1 and A_2 on X_Γ fall in Ω iff the nontrivial zeros of $\det(I - A_1 u + qA_2 u^2 - q^3 u^3 I)$ have absolute value q^{-1}.

In this sense we have

(3) X_Γ is a Ramanujan complex if and only if $Z(X_\Gamma, u)$ satisfies RH.

Ramanujan complexes are spectrally optimal since an analog of the Alon-Boppana type theorem holds, proved by Li in 2004.
Kang-L-Wang showed that the Ramanujan condition has two more equivalent statements:

(a) the nontrivial zeros of \(\text{det}(I - L_Eu) \) have absolute values \(q^{-1} \) and \(q^{-1/2} \);

(b) the nontrivial zeros of \(\text{det}(I - L_Bu) \) have absolute values \(1, q^{-1/2}, \) and \(q^{-1/4} \).
General remarks

• There are suitable choices of Γ so that the zeta functions of X_Γ are related to the zeta functions of modular surfaces similar to what we saw for modular curves.

• When Γ comes from a global congruence subgroup, $\det(I - A_1 u + qA_2 u^2 - q^3 u^3 I)$ is the local factor of a global automorphic L-function.

• An element in Γ is called primitive if it generates its centralizer in Γ.
• When X_Γ is a graph with fundamental group Γ,

$$\frac{(1 - u^2)\chi(X_\Gamma)}{\det(I - Au + qu^2I)} = \prod_{[C]} \frac{1}{1 - u^{l_A(C)}},$$

where $[C]$ runs through conjugacy classes of primitive $C \in \Gamma$, and $l_A(C) = \text{ord}_\pi \alpha/\beta$ with α, β being the two eigenvalues of C arranged so that α/β is integral.

• When X_Γ is a complex from \mathcal{B}_3 with fundamental group Γ,

$$\frac{(1 - u^3)\chi(X_\Gamma)}{\det(I - A_1u + qA_2u^2 - q^3u^3I)} = \frac{1}{\det(I - LEu)} \prod_{[C]} \frac{1}{1 - u^{l_A(C)}},$$

where $[C]$ runs through conjugacy classes of primitive $C \in \Gamma$ such that $l_A(C) < l_A(C^{-1})$.

24
Figure 4: an apartment of Δ_4
The building Δ_4 associated to $Sp_4(F)$

Joint work with Yang Fang and Chian-Jen Wang

- The vertices of the building Δ_4 of $Sp_4(F)$ are equiv. classes of certain rank 4 lattices, they fall into three kinds: primitive special, non-primitive special, and non-special. They are of type 0, 2, 3, resp.

- Up to conjugacy, $G = PGSp_4(F)$ has two maximal compact subgroups: the standard max’l compact $PGSp_4(O_F)$ and the paramodular subgroup P_{02}.

- G acts transitively on special vertices and the special vertices $\leftrightarrow PGSp_4(O_F)$-cosets.

- There is an involution $\tau \in G$ interchanging primitive special with non-primitive special vertices.
• \(P'_{02} = \langle P_{02}, \tau \rangle \). The non-special vertices \(\leftrightarrow P'_{02}\)-cosets.

• Two kinds of edges:
 1. type 1 edges between primitive special and non-primitive special vertices
 \(\leftrightarrow E_1 \) (Siegel congruence subgroup)-cosets
 2. type 2 edges between special and non-special vertices
 \(\leftrightarrow E_2 \) (Klingen congruence subgroup)-cosets

• directed chambers \(\leftrightarrow I \) (Iwahori subgroup) - cosets

• Similarly, there are vertex adjacency operators \(A_1 \) and \(A_2 \) on special vertices, edge adjacency operators \(L_{E_1} \) and \(L_{E_2} \) on type 1 and type 2 edges, and chamber adjacency operator \(L_I \) on directed chambers. They are operators on suitable double cosets.
Zeta functions of finite quotients of Δ_4

Let Γ be a discrete torsion-free co-compact subgroup of $\text{PGSp}_4(F)$ such that $\text{ord}_\pi \det(\Gamma) \equiv 0 \pmod{4}$. Then Γ preserves the types of the vertices. Let $X_\Gamma = \Gamma \backslash \Delta_4$. Define the zeta function of X_Γ in the same way as the $\text{PGL}_3(F)$ case.

Theorem [Fang-L-Wang] The zeta function $Z(X_\Gamma, u)$ is a rational function with the following two expressions:

$$Z(X_\Gamma, u) = \frac{(1 - u^2)\chi(X_\Gamma)(1 - q^2u^2)N_s - N_{ns}}{\det(I - A_1u + qA_2u^2 - q^3A_1u^3 + q^6Iu^4)\det(I - L_Iu)} = \frac{1}{\det(I - L_{E_1}u)\det(I - L_{E_2}u^2)},$$

where $\chi(X_\Gamma)$ is the Euler char. of X_Γ, and N_s (resp. N_{ns}) is the number of special (resp. non-special) vertices in X_Γ.

28
Ramanujan complexes from Δ_4 and RH

X_Γ is a Ramanujan complex from Δ_4

iff the infinite-dimensional representations in $L^2(\Gamma\backslash PGSp_4(F))$
containing nontrivial $PGSp_4(\mathcal{O}_F)$-invariant vectors are tempered

iff all nontrivial zeros of $\det(I - A_1 u + qA_2 u^2 - q^3 A_1 u^3 + q^6 I u^4)$
have absolute value $q^{-3/2}$

iff $Z(X_\Gamma, u)$ satisfies RH.
Like PGL_3 case, there are equivalent statements in terms of operators on edges of type 1, edges of type 2, and directed chambers.

Theorem [Fang-L-Wang] The following are equivalent:

(a) $X\Gamma$ is a Ramanujan complex from Δ_4;

(b) The nontrivial zeros of $\det(I - A_1 u + qA_2 u^2 - q^3 A_1 u^3 + q^6 I u^4)$ have absolute value $q^{-3/2}$;

(c) The nontrivial zeros of $\det(I - L_{E_1} u)$ have absolute values $q^{-3/2}$ and q^{-1};

(d) The nontrivial zeros of $\det(I - L_{E_2} u)$ have absolute values $q^{-3/2}$, q^{-2} and q^{-1};

(e) The nontrivial zeros of $\det(I - L_{I} u)$ have absolute values $q^{-3/4}$, q^{-1}, $q^{-1/2}$ and 1.