报告题目:Efficient and structure-preservingschemes for complex nonlinear models
报告人:李晓丽,山东大学
报告时间:5月23日 10:00-11:00
报告地点:管理楼1418
摘要:
In this talk, we first propose two efficient fully-discrete schemes for the Q-tensor flow. The discrete energy dissipation laws are unconditionally satisfied for both two constructed schemes. A particular feature is that, for two-dimensional (2D) and a kind of three-dimensional (3D) Q-tensor flows, the unconditional maximum-bound-principle (MBP) preservation of the constructed first-order scheme is successfully established, and the proposed second-order scheme preserves the discrete MBP property with a mild restriction on the time-step sizes. Next we present several high-order and physics-preserving numerical schemes for thermodynamically consistent model of incompressible and immiscible two-phase flow in porous media.
个人简介:
李晓丽,山东大学教授,博士生导师,国家高层次青年人才入选者,山东省杰青,山东大学杰出中青年学者。担任中国数学会计算数学分会常务理事,CSIAM油水资源专委会秘书长。主要研究领域为偏微分方程数值解与计算流体力学。在SIAM J. Numer. Anal., SIAM J. Sci. Comput., Math. Comp., J. Fluid Mech., Math. Mod. Meth. Appl. Sci.及J Comput. Phys.等计算数学高水平期刊上发表学术论文多篇。主持国家自然科学基金面上项目、重点项目子课题、青年项目等多个国家及省部级项目。