胡森

发布者:万宏艳发布时间:2021-01-19浏览次数:127


学习及工作经历:

1978-1983,就读于中国科技大学数学系,获学士学位

1983-1986,就读于中国科学院系统科学研究所,获硕士学位,导师:吴文俊院士

1986-1990,就读于美普林斯顿大学,获博士学位,导师:J. Mather, W. Thurston

1990—1992, 美西北大学数学系助理教授

1992-1993,法高工访问研究(M. Herman)

1993-1994,美普林斯顿高等研究院访问研究

1994-1996,美普林斯顿大学访问研究

1996-1997,美纽约市立大学(爱因斯坦讲座教授D. Sullivan邀)访问

1997-2001,美普林斯顿大学访问研究并在世界科学出版社任编辑

2000年入选中国科学院人才计划,次年起到中国科学技术大学数学系任教 

研究工作:

胡森教授长期在量子场论与弦论方面开展工作,在弦论与场论的对偶,带通量的真空态与广义Calabi-Yau流形,时空截断的代数结构,Chern-Simons量子场论的构造,BV量子化与Feynman 几何,SCHWARZSCHILD-DE SITTER 度量,几何宇宙学常数,结构稳定系统的刻画等方面做了一些原创性的工作。

 

1) AdS/CFT 对应和规范场/引力场对偶

在1997年Maldacena提出著名的AdS/CFT猜测后弦论与规范场的对偶成为弦论研究的核心课题。Klebanov-Strassler,Maldacena-Nunez 分别找到了两个新的解,猜测他们是N=2,1 SYM的超引力对偶。我们通过D5 branes probes, 在Maldacena-Nunez背景下引入了物质场。这项工作得到该领域的广泛认可。


Sen Hu (with Wang Xiao Jun), Intersecting branes and adding flavors to the Maldacena-Nunez background, JHEP 0309 (2003) 017. 

在Johanna Erdmenger, Nick Evans, Ingo Kirsch and Ed Threlfall, Mesons in Gauge/Gravity Duals A Review (arxiv0711.4467)里介绍我们的工作:The Maldacena-Nu˜nez background [124] is dual to an N = 1 theory on the world-volume of a D5 brane wrapped on a 2-sphere and therefore describes a relative of N = 1 Yang Mills theory with additional Kaluza Klein modes. The dual encodes the condensation of gauginos and the N discrete vacua of the theory. Probe D5 branes have been used to introduce matter fields into this theory with N = 1 supersymmetry preserved in [125](上文) [126].


Sen Hu (with Wang Xiao Jun), Green Functions of N=1 SYM and Radial/Energy-Scale Relation, hep-th/0210041, Physical Review D67 (2003) 105012. 

Carlos N´u˜nez, Angel Paredes and Alfonso V. Ramallo:Flavoring the gravity dual of N = 1 Yang-Mills with probes (hep-th, 0311201, p27), The way of adding fundamental fields in this gauge theory from a string theory perspective was discussed in [28] (上文), where two possible ways, adding D9 branes or adding D5 branes as probes, were proposed.

Sen Hu, Kuozhen Wu, Entanglement Entropy of $AdS_{5} \times S^{5}$ with massive flavors, MODERN PHYSICS LETTERS A, Vol. 33(1), 2018. 

David Dudala, Subhash Mahapatra, Thermal entropy of a quark-antiquark pair above and below deconfinement from a dynamical holographic QCD model (arXiv 1708.0699).

2) 带通量的真空态与广义Calabi-Yau流形

在弦理论的研究中, 一个中心问题是研究弦紧化, 即从十维时空得到四维时空。六维的内禀空间包含了丰富的物理信息。保持超对称的解尤为重要。没有通量仍然保持超对称的就是Calabi-Yau流形。带通量的超对称解,人们可用广义Calabi-Yau结构刻化。我们提出带通量解模空间的特殊几何。

Hu Sen; Hou Boyu; Yang Yanhong, On special geometry of the moduli space of string vacua with fluxes, International Congress of Chinese Mathematicians, 2006, Zhejiang University, Hangzhou, 2006-8.  

In Li-Sheng Tseng and Shing-Tung Yau, Generalized Cohomologies and Supersymmetry (Arxiv 1111.6968), The presence of branes sources present another subtlety which we have ignored. Because branes are represented by singular currents in the equations, all geometrical quantities necessarily becomes singular on the support of the branes. The type of cohomologies characterizing the moduli should rigorously be those with compact support and vanishing along the branes. Such an approach has been discussed in [13, 上文].

我们从超引力作用量提出广义Ricci流,吸引了一些几何分析学家的兴趣,他们在研究我们提出的流。

Chun-lei He, Sen Hu, De-Xing Kong, Kefeng Liu, Generalized Ricci flow I: Local existence and uniqueness,  Proceedings of Nankai International Conference in Memory of Xiao-Song Lin, 27-31 July 2007. 


3)Chern-Simons量子场论的构造,BV量子化与Feynman 几何


在一本专著里系统地阐述了Witten的Chern-Simons量子化的理论。 Witten特别作序介绍。近年来我们基于Witten的方法,用Yang-Yang函数构造了已知的扭结多项式,拓展了Witten的工作。

Sen Hu: Lecture Notes on Chern-Simons-Witten Theory, World Scientific,2001. 

Sen Hu and Peng Liu, Kauffman Polynomial from a Generalized Yang-Yang Function,Annales Henri Poincare, 2016, 17(5): 1145-1179. 


我们提出了Feynman几何的概念,用A无穷代数来刻画时空。这个想法用于各种正规化与截断,把各种量子化方案,比如格点场论,弦场论,微扰规范场论,非对易场论等的构造统一起来,成为构造量子场论的一个基本概念。

Sen Hu and A. Losev, Feynman geometries,60 Years of Yang-Mills Gauge Field Theories: C.N. Yang's Contributions to Physics, Nanyang Institute of Technology, Singapore,2016.


4)SCHWARZSCHILD-DE SITTER 度量,几何宇宙学常数

在华罗庚教授的建议下,陆启铿、郭汉英,邹振隆七十年代发展了de Sitter与反de Sitter狭义相对论。我们在这个框架下,构造了Schwarzschild黑洞解。

Sun, Li-Feng; Yan, Mu-Lin; Deng, Ya; Huang, Wei; Hu, Sen, SCHWARZSCHILD-DE SITTER METRIC AND INERTIAL BELTRAMI COORDINATES, Modern Physics Letters A, Vol. 28(29), 2013. 

In B. Pourhassan and H. Farahani,Thermodynamics of Higher Order Entropy Corrected Schwarzschild-Beltrami-de Sitter Black Hole (arXiv1701.0865),In this paper we would like to use this result to study modified thermodynamics of Schwarzschild- 3 Beltrami-de Sitter black hole [33] which is indeed an unstable dynamical black hole and obtained by introducing inertial Beltrami coordinates to traditional non-inertial Schwarzschild-de Sitter metric.

我们提出几何宇宙学常数的概念,将宇宙学常数与de Sitter时空的参数分开。这些想法引起了一些宇宙学家的兴趣。

Yan, Mu-Lin; Hu, Sen; Huang, Wei; Xiao, Neng-Chao, ON DETERMINATION OF THE GEOMETRIC COSMOLOGICAL CONSTANT FROM THE OPERA EXPERIMENT OF SUPERLUMINAL NEUTRINOS, Modern Physics Letters A, 2012, 27(11): 0-1250041.  

5)结构稳定系统的刻画

     结构稳定性问题,六十年代起,Smale学派做了很多研究,提出了刻画结构稳定性的猜测。结构稳定的系统,就是一些大范围的常微分方程组,其系数和其一阶导数做一个小的扰动,定性行为仍然是一样的。为刻画结构稳定系统,横截性条件是最基本的。为此廖先生发展了阻碍集的概念与理论,定量地刻画一般轨道上的横截性。廖先生的工作荣获国家自然科学一等奖。我在廖先生等工作的基础上,做了一点贡献。我将Mane的微扰技巧做了一点改进,验证了三维微分动力系统的结构稳定性猜测。此项工作得到廖山涛院士的肯定。

Sen Hu, A proof of C1 stability conjecture for three dimensional flows, Trans. Of Amer. Math. Soc., 342(1994), 753-772. 

 

 Liao Shantao, Qualitative Theory of Differentiable Dynamical Systems, p383, Science Press, 1996.

发表论文:

Sen Hu, Zhi Hu, Geometric aspect of three-dimensional Chern-Simons-like gravity, Journal of Geometry and Physics, Vol. 145, 2019, DOI: 10.1016/j.geomphys.2019.103482.

Lu, Xuexing; Ye, Yu; Hu, Sen, A Graphical Calculus for Semi-Groupal Categories, Applied Categorical Structures, 2019, 27(2): 163-197.

Sen Hu, Kuozhen Wu, Entanglement entropy of AdS(5) x S-5 with massless flavors at nonzero temperature, International Journal of Modern Physics A, Vol. 33(7), 2018, DOI: 10.1142/S0217751X18500331. 

Sen Hu, Kuozhen Wu, Entanglement Entropy of $AdS_{5} \times S^{5}$ with massive flavors, MODERN PHYSICS LETTERS A, Vol. 33(1), 2018.

Sen Hu, On John Mather’s work, Methods and Applications of Analysis, 2018, International Press.

Sen Hu, Andrey Losev, Feynman geometries, 60 Years of Yang-Mills Gauge Field Theories: C.N. Yang's Contributions to Physics, Nanyang Institute of Technology, Singapore, World Scientific, 2016.

Sen Hu, Peng Liu, Kauffman Polynomial from a Generalized Yang-Yang Function, Annales Henri Poincare, Vol. 17(5), 1145-1179, 2016, DOI: 10.1007/s00023-015-0426-9. 

Sen Hu, Peng Liu, HOMFLY Polynomial from a Generalized Yang–Yang Function, Communications in Mathematics and Statistics, Vol. 3(3), 329-352, 2015, DOI: 10.1007/s40304-015-0063-0. 

Sen Hu, Zhi Hu, On geometry of the (generalized) G(2)-manifolds, International Journal of Modern Physics A, Vol. 30(20), 2015, DOI: 10.1142/S0217751X15501122. 

Hu, Sen; Li, Kang, THE MINIMAL S-3 WITH CONSTANT SECTIONAL CURVATURE IN CPn, JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, (11): 86-90.  

Hu, Sen; Hu, Zhi, CLASSICAL AND QUANTUM ASPECTS OF FIVE-DIMENSIONAL CHERN-SIMONS GAUGE THEORY, International Journal of Modern Physics A, 2014, 29(1): 0-1450003.  

Hu, Sen; Hu, Zhi; Lan, Guitang, On Hodge theory for the generalized geometry (I), JOURNAL OF GEOMETRY AND PHYSICS, Vol. 70, 172-184, 2013, DOI: 10.1016/j.geomphys.2013.02.011.

Sun, Li-Feng; Yan, Mu-Lin; Deng, Ya; Huang, Wei; Hu, Sen, SCHWARZSCHILD-DE SITTER METRIC AND INERTIAL BELTRAMI COORDINATES, Modern Physics Letters A, Vol. 28(29), 2013, DOI: 10.1142/S0217732313501149. 

Yan, Mu-Lin; Hu, Sen; Huang, Wei; Xiao, Neng-Chao, ON DETERMINATION OF THE GEOMETRIC COSMOLOGICAL CONSTANT FROM THE OPERA EXPERIMENT OF SUPERLUMINAL NEUTRINOS, Modern Physics Letters A, 2012, 27(11): 0-1250041.  

Mu-Lin Yan, Neng-Chao Xiao, Wei Huang, Sen Hu, Superluminal Neutrinos from Special Relativity with de Sitter Space-time Symmetry,  Mod. Phys. Lett. A, Vol. 27, No. 14 1250076 (2012). 

Chen, Qing; Hu, Sen; Xu, Xiaowei, CONSTRUCTION OF LAGRANGIAN SUBMANIFOLDS IN CPn, Pacific Journal of Mathematics, 2012, 258(1): 31-49. 

Hu, Sen; Hu, Zhi; Zhang, Ruoran, ON SL(2, R) AND AdS GRAVITY, INTERNATIONAL JOURNAL OF MODERN PHYSICS A, Vol. 27(23), 2012, DOI: 10.1142/S0217751X12501382. 

Cheng, Jipeng; He, Jingsong; Hu, Sen The ghost'' symmetry of the BKP hierarchy. J. Math. Phys. 51 (2010), no. 5, 053514, 19 pp. 

Hu, Sen; Hu, Zhi; Zhang, Ruoran, Generalized Ricci flow and supergravity vacuum solutions, International Journal of Modern Physics A, 2010, 25(12): 2535. SCI. 

Ding Lu; Chen Ying-Tian; Hu Sen; Zhang Yang, Realization of Fine Tip Tilting by 16-Step Line Tilting, Communications in Theoretical Physics, 2010, 54(1): 175-180. 

Hu Sen; Ma Wenye; Qiu Jingpei, N=2 SCVA's FROM A GENERALIZED CALABI-YAU MANIFOLD AND MIRROR SYMMETRY, Acta Mathematica Scientia, 2009, 29(4): 961-972.  

Hu Sen; Hou Boyu; Yang Yanhong, On special geometry of the moduli space of string vacua with fluxes, International Congress of Chinese Mathematicians, 2006, Zhejiang University, Hangzhou, 2006-8. 

Chun-lei He, Sen Hu, De-Xing Kong, Kefeng Liu, Generalized Ricci flow I: Local existence and uniqueness,  Proceedings of Nankai International Conference in Memory of Xiao-Song Lin, 27-31 July 2007. 

Liu, GZ; Hu, S, Stripe formation driven by space noncommutativity in quantum Hall systems, Physics Letters A, 2006, 354(5-6): 482-486. 

Hu, Sen; Wang, Jing-Rong, Effective cosmological constant in brane cosmology, International Journal of Modern Physics D, 2006, 15(6): 895-903. 

Hu Sen; Wang Xiaojun, Intersecting branes and adding flavors to the Maldacena-Nunez background, JHEP, 2003, 017. 

Hu Sen; Wang Xiaojun, Green Functions of N=1 SYM and Radial/Energy-Scale Relation, Physical Review D, 2003, 67: 105012. 

Hu Sen; Wang Xiaojun, Gauge/Gravity Duality, Green Functions of N=2 SYM and Radial/Energy-Scale Relation, JHEP 0210 (2002) 005. 

Sen Hu,Lecture notes on Chern-Simons-Witten theory. With a preface by E. Witten. World Scientific Publishing Co., Inc., River Edge, NJ, 2001.

Sen Hu, A variational principle associated to positive tilt maps. Comm. Math. Phys. 191 (1998), no. 3, 627–639. 

Sen Hu, A proof of C1 stability conjecture for three-dimensional flows. Trans. Amer. Math. Soc. 342 (1994), no. 2, 753–772.