Title:On the polar Orlicz-Minkowski problems
Speaker:朱保成 教授 (湖北民族大学)
Time:2018年10月12日(周五) 上午 10:00-11:00
Room:东区管理科研楼 数学科学学院1418室
Abstract:We will talk about the polar Orlicz-Minkowski problems: under what conditions on a nonzero finite measure and a continuous function $/varphi:(0,/infty)/to (0,/infty)$ there exists a convex body $K/in /Re_0$ such that $K$ is an optimizer of the following optimization problems:
$${/inf//sup}_{|L^{^{^/circ}}|=/omega_n}/left/{/int_{S^{n-1}}/varphi(h_L)d/mu:L/in /Re_0/right/}.$$
The solvability of the polar Orlicz-Minkowski problems is discussed under different conditions. In particular, under certain conditions on$/varphi$, the existence of a solution is proved for a nonzero finite measure $/mu$ on unit sphere $S^{n-1}$ which is not concentrated on any hemisphere of $S^{n-1}$.