Title:Formality conjecture and moduli spaces of sheaves on K3 surfaces
Speaker:Ziyu Zhang (Leibniz University Hannover)
Time:2018年9月14日(周五) 下午 16:00-17:30
Room:东区管理科研楼 数学科学学院1418室
Abstract:The formality conjecture for K3 surfaces, formulated by D.Kaledin and M.Lehn, states that on a complex projective K3 surface, the differential graded algebra RHom(F,F) is formal for any coherent sheaf F polystable with respect to an ample line bundle. In this talk, I will explain how to combine techniques from twistor spaces, dg categories and Fourier-Mukai transforms to prove this conjecture, and how to generalize it to derived objects. Based on joint work with Nero Budur.